[1] S. Yu, K. L. Cheung, W. Li, and A.-N. Kong, Plant Phenolic Compounds: Biochemistry, Nutrition, and Pharmacology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009.

[2] D. M. Kasote, S. S. Katyare, M. V Hegde, and H. Bae, “Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications,” Int. J. Biol. Sci., vol. 11, no. 8, pp. 982–991, 2015.

[3] D. P. Zagklis and C. A. Paraskeva, “Preliminary design of a phenols purification plant,” J. Chem. Technol. Biotechnol., vol. 95, no. 2, pp. 373–383, Feb. 2020.

[4] D. P. Zagklis and C. A. Paraskeva, “Isolation of organic compounds with high added values from agro-industrial solid wastes,” J. Environ. Manage., vol. 216, 2018.

[5] R. Japón-Luján, J. M. Luque-Rodríguez, and M. D. L. De Castro, “Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves,” J. Chromatogr. A, vol. 1108, no. 1, pp. 76–82, 2006.

[6] A. P. Pereira et al., “Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves,” Molecules, vol. 12, no. 5, pp. 1153–1162, 2007.

[7] S. Silva, L. Gomes, F. Leitão, A. V Coelho, and L. V. Boas, “Phenolic Compounds and Antioxidant Activity of Olea europaea L. Fruits and Leaves,” Food Sci. Technol. Int., vol. 12, no. 5, pp. 385–395, 2006.

[8] F. Cherubini, “The biorefinery concept: Using biomass instead of oil for producing energy and chemicals,” Energy Convers. Manag., vol. 51, no. 7, pp. 1412–1421, 2010.

[9] C. Bergeron, D. J. Carrier, and S. Ramaswamy, “Overview of the Chemistry of Primary and Secondary Plant Metabolites,” in Biorefinery Co-Products: Phytochemicals, Primary Metabolites and Value-Added Biomass Processing, 2012, pp. 19–35.

[10] A. R. War et al., “Mechanisms of plant defense against insect herbivores,” Plant Signal. Behav., vol. 7, no. 10, 2012.

[11] R. Verpoorte, “Exploration of nature’s chemodiversity: The role of secondary metabolites as leads in drug development,” Drug Discov. Today, vol. 3, no. 5, pp. 232–238, 1998.

[12] J. Kudakasseril Kurian, G. Raveendran Nair, A. Hussain, and G. S. Vijaya Raghavan, “Feedstocks, logistics and pretreatment processes for sustainable lignocellulosic biorefineries: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 25, pp. 205–219, 2013.

[13] S. N. El and S. Karakaya, “Olive tree (Olea europaea) leaves: Potential beneficial effects on human health,” Nutr. Rev., vol. 67, no. 11, pp. 632–638, 2009.

[14] I. Hassen, H. Casabianca, and K. Hosni, “Biological activities of the natural antioxidant oleuropein: Exceeding the expectation - A mini-review,” J. Funct. Foods, vol. 18, no. 2015, pp. 926–940, 2015.

[15] H. J. Wichers, C. Soler-rivas, and J. C. Espı, “Review Oleuropein and related compounds,” J. Sci. Food Agric., vol. 80, no. November 1999, pp. 1013–1023, 2000.

[16] S. Granados-Principal, J. L. Quiles, C. L. Ramirez-Tortosa, P. Sanchez-Rovira, and M. C. Ramirez-Tortosa, “Hydroxytyrosol: From laboratory investigations to future clinical trials,” Nutr. Rev., vol. 68, no. 4, pp. 191–206, 2010.

[17] J. Fernandez-Bolanos, O. Lopez, J. Fernandez-Bolanos, and G. Rodriguez-Gutierrez, “Hydroxytyrosol and Derivatives: Isolation, Synthesis, and Biological Properties,” Curr. Org. Chem., vol. 12, no. 6, pp. 442–463, 2008.

[18] R. Capasso, A. Evidente, S. Avolio, and F. Solla, “A highly convenient synthesis of hydroxytyrosol and its recovery from agricultural waste waters,” J. Agric. Food Chem., vol. 47, no. 4, pp. 1745–1748, 1999.

[19] J. Fernández-Bolaños, G. Rodríguez, R. Rodríguez, A. Heredia, R. Guillén, and A. Jimínez, “Production in large quantities of highly purified hydroxytyrosol from liquid-solid waste of two-phase olive oil processing or ‘alperujo,’” J. Agric. Food Chem., vol. 50, no. 23, pp. 6804–6811, 2002.

[20] N. Allouche, I. Fki, and S. Sayadi, “Toward a High Yield Recovery of Antioxidants and Purified Hydroxytyrosol from Olive Mill Wastewaters,” J. Agric. Food Chem., vol. 52, no. 2, pp. 267–273, 2003.